	LONDONE DE LA	A OLONIA TUDA		ADDENIDIZA IE
١	JOMBRE DE LA	ASIGNATURA	() UNII)AD DE	APRENDIZAJE

ELECTROMAGNETISMO

CICLO	CLAVE DE LA ASIGNATURA
Primero	EM

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Al finalizar el curso el alumno poseerá conocimientos fundamentales de la Teoría Electromagnética y su relación y aplicación en el ámbito de los fenómenos ópticos, siendo capaz de plantear y resolver problemas básicos derivados de la concepción de la luz como resultado de la interacción de ondas

TEMAS Y SUBTEMAS

(Texto), Cap., Pág

0. Sistemas de Unidades (SI, Gaussiano)

1. Ecuación de onda (5 sesiones)

- 1.1. Ecuación de onda; ondas escalares y vectoriales en el espacio libre (1) V 167-174
 - 1.1.1.Ecs. de Maxwell en el vacío, sin cargas ni corrientes.
 - 1.1.2.Ecs. de onda para E y B .
 - 1.1.3.Ec. de onda escalar y su solución por separación de variables para ondas armónicas
 - 1.1.4. Interpretación física de la solución de ondas viajeras.
 - 1.1.5. Parámetros de onda.
 - 1.1.6. Forma general de la función de onda escalar.
 - 1.1.7.Ondas planas monocromáticas
 - 1.1.8. Naturaleza transversal de las ondas planas.
- 1.2 Energía del campo electromagnético
 1.2.1 Teorema de Poynting

(1) V 177-181

- 1.2.2 Vector de Poynting de campos complejos
- 1.3 Polarización lineal, circular y elíptica. PRÁCTICA DEMOSTRATIVA
- (2) I 24-32

(1) IV 143-147

- 1.3.1 Forma general de una onda plana polarizada.
- 1.3.2 Ecuación de la elipse de polarización.
- 1.3.3 Diferentes estados de polarización y sentido de giro.

2. Ondas en medios conductores y no conductores (6 sesiones)

- 2.1 Ondas en medios conductores
- 2.2 Distribución de corriente en conductores
- 2.3 Ondas en medios no conductores
- 2.4 Reflexión y refracción en dieléctricos

(1) V 159-173

- 2.5 Ecuaciones de Fresnel. PRÁCTICA DEMOSTRATIVA
- 2.6 Reflexión total interna y externa
- 2.7 Angulo de polarización.

(3) IV 80-84

- 2.8 Corrientes de fase
- 2.9 Reflectancia y transmitancia.

(1) IV 168-169 (1) IV 173-180

2.10 Reflexión y refracción en metales

(2) XII 617-620

3. Sistemas radiantes (4 sesiones)

(1) VIII 225-245

- 3.1 Radiación dipolar.
- 3.2 Los vectores de Hertz.
- 3.3 Campo debido a un dipolo Hertziano.

3.4 Campo radiado por un dipolo oscilante. PRÁCTICA DEMOSTRATIVA (1) VIII 257-264

(1) IX 282-291

(1) IX 300-303

(2) XIV 665-686

(2) XVI 690-694

3.5 Radiación cuadrupolar eléctrica.

4. Modelos de dispersión (4 sesiones)

4.1 Dispersión en gases

4.2 Dispersión en líquidos y sólidos.

4.3 Conductividad de un medio de electrones libres.

4.4 Propiedades ópticas de los metales.

4.4 Propiedades opticas de los metales.
4.5 Relaciones de Kramers-Kronig: (Enunciar ley e ilustración sencilla) (5) VII 330-335

 Relaciones de Kramers-Kronig: (Enunciar ley e ilustración sencilla 4.4.1 Causalidad en la relación entre D y E

5. Óptica de cristales (6 sesiones)

5.1 Isotropía y anisotropía

- 5.2 Estructura de una onda plana monocromática en un mesio anisotrópico
- 5.3 Ecuaciones de Fresnel para la propagación en cristales
- 5.4 Construcción geométrica para determinar las velocidades de propagación y las direcciones de vibración
- 5.5 Clasificación óptica de cristales. PRÁCTICA DEMOSTRATIVA
- 5.6 Propagación de luz en cristales uniaxiales
- 5.7 Producción de luz polarizada y dispositivos de polarización
- Actividad óptica, rotación de Faraday, efecto Kerr electroóptico, efecto Pockels, dicroismo

ACTIVIDADES DE APRENDIZAJE

- i) Frente a docente: Se cubre un total de 28 sesiones de una hora y media a la semana con la participación activa del estudiante.
- **ii) Independientes:** El estudiante realiza al menos 42 horas de actividades diversas fuera del aula como: tareas, solución de problemas, lectura y análisis de artículos de investigación y otras referencias bibliográficas.
- iii) Demostraciones:
 - a) Polarización (incluyendo introducción a parámetros de Stokes)
 - b) Reflexión y refracción (ley de reflexión, ley de Snell, y ecuaciones de Fresnel)
 - c) Antena (Radiación electromagnética)
 - d) Birrefringencia

CRITERIOS Y PROCEDIMIENTOS DE EVALUACION Y ACREDITACION

El curso se evalúa de acuerdo a los siguientes conceptos: tareas, exposiciones, investigación, exámenes y asistencia. El porcentaje para cada uno de estos puntos, será criterio del docente.

BIBLIOGRAFÍA

• Classical Electromagnetic Radiation

J. B. Marion and M. A. Heald

Thomson Learning

Third edition (1995)

Principles of Optics

M. Born and E. Wolf

Cambridge University Press

Seventh edition (2005)

Optica

E. Hecht, A. Zajac

Addison Wesley

Tercera edición (2000)

Optical waves in crystals

A. Yariv and P. Yeh

John Wiley&Sons (1984)

• Classical Electrodynamics

J. D. Jackson

J. D. Jackson
John Wiley&Sons
Third edition (2001)

Optics
Miles V. Klein, and Thomas E. Furtak
John Wiley&Sons
Second edition (1986)