NOMBRE DE LA ASIGNATURA	
COMPUTACIÓN EVOLUTIVA	

CICLO	CLAVE DE LA ASIGNATURA
OPTATIVA	OVIA3

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

- -Adiestrar al estudiante en el manejo de algoritmos evolutivos para utilizarlos como herramienta en su trabajo de investigación y experimental.
- -Modelar problemas de inteligencia artificial y de aprendizaje de máquina utilizando algoritmos evolutivos.
- -Estudio de los diferentes operadores genéticos utilizados en los algoritmos de computación evolutiva.

TEMAS Y SUBTEMAS

- 1. Introducción
 - 1.1 Historia de la computación evolutiva
 - 1.2 Técnicas de optimización
 - 1.3 Ventajas de los Algoritmos Genéticos sobre otras técnicas
 - 1.4 Algoritmo Genético Simple
 - 1.5 Teoría de Esquemas

2. Teoría Básicas de Algoritmos Genéticos

- 2.1 Representación de cromosomas
 - 2.1.1 Binario
 - 2.1.2 Real
 - 2.1.3 Permutaciones
- 2.2 Selección
 - 2.2.1 Proporcional
 - 2.2.2 Torneo
 - 2.2.3 Ranking
 - 2.2.4 Boltzmann
- 2.3 Cruzamiento
 - 2.3.1 Un punto
 - 2.3.2 Dos puntos
 - 2.3.3 Uniforme
- 2.4 Mutación
 - 2.4.1 Binario
 - 2.4.2 Real
 - 2.4.3 Permutaciones

3. Temas avanzados

- 3.1 Operadores avanzados
 - 3.1.1 Inversión
 - 3.1.2 Operador de reordenamiento
 - 3.1.3 Dominancia

4. Aplicaciones

- 4.1 Procesamiento de Imágenes
- 4.2 Visión por computadora
- 4.3 Clasificación

ACTIVIDADES DE APRENDIZAJE

- i) Frente a docente: Se cubre un total de 28 sesiones de una hora y media a la semana con la participación activa del estudiante.
- **ii) Independientes**: El estudiante realiza al menos 42 horas de actividades diversas fuera del aula como: tareas, solución de problemas, lectura y análisis de artículos de investigación y otras referencias bibliográficas.
 - Exposición teórica de los temas del programa
 - Prácticas en el Laboratorio de cómputo

- Investigación de biblioteca
- Investigación en Internet
- Desarrollo de algoritmos por parte del estudiante
- Prácticas en laboratorio de cómputo
- Desarrollo de un proyecto final

CRITERIOS Y PROCEDIMIENTOS DE EVALUACION Y ACREDITACION

2 EXAMENES PARCIALES 30 %

TAREAS Y PARTICIPACION 30 %

PROYECTO FINAL 20 %

EXAMEN FINAL 20 %

100 %

BIBLIOGRAFIA

 Genetic Algorithms in Search, Optimization and Machine Learning David Goldberg Addison Wesley