ÓPTICA DE FOURIER

CICLO	CLAVE DE LA ASIGNATURA
OPTATIVA	OOF04

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

El estudiante, al finalizar el curso, conocerá la propagación ondulatoria de la luz utilizando técnicas de sistemas lineales. Aprenderá los fundamentos del diseño y análisis de diferentes sistemas ópticos utilizando las herramientas del procesamiento de señales. Habrá estudiado diferentes sistemas ópticos como los formadores de imágenes, el procesamiento óptico de

Prerrequisitos: Se considera que el estudiante está familiarizado con la teoría escalar de difracción, y las propiedades básicas de la Transformada de Fourier.

9. Tomografía computarizada

TEMAS Y SUBTEMAS 1. Introducción	1 Sesión	
2. La lente como elemento que realiza la transformada de Fourier y la imagen de un objeto.		
2.1Transformada de fase por una lente delgada	1 Sesión	
2.2Propiedades de las transformadas de Fourier por una lente	1 Sesión	
2.3Notación operacional 2.4Ejemplos	1 Sesión 1 Sesión	
·	1 0031011	
 Sistemas formadores de imágenes coherentes e incoherentes 3.1 Efectos de la difracción en la imagen 	1 Sesión	
3.2 Iluminación policromática: casos de iluminación coherente e incoherente	1 Sesión	
·		
4. Función de transferencia óptica (OTF)	1 Sesión	
5. Aberraciones y sus efectos en la respuesta a las frecuencias espaciales		
5.1 Efectos de las aberraciones en función de transferencia de amplitud	1 Sesión	
5.2Efectos de aberraciones en la OTF	1 Sesión	
5.3Ejemplos	1 Sesión	
5.4Apodización y sus efectos en la respuesta a las frecuencias	1 Sesión	
5.5SLM, moduladores magneto ópticos.	1 Sesión	
6. Procesamiento analógico de información óptica		
6.1Filtraje espacial y filtros apodizadores	1 Sesión	
6.2Procesamiento óptico: convolución y correlación	1 Sesión	
6.3Procesamiento de señales optoacústicas	1 Sesión	
6.4Procesadores ópticos analógicos discretos	1 Sesión	
7. Abertura sintética e Interferometría		
7.1Campo de una fuente incoherente, correlación, Visibilidad	1 Sesión	
7.2Medición de Coherencia	1 Sesión	
7.3Radar de abertura sintética	1 Sesión	
8. Holografía: registro y reconstrucción		
8.1Localización y amplificación de la imagen	1 Sesión	
8.2 Diferentes tipos de hologramas	1 Sesión	
8.3Aplicaciones	1 Sesión	

^{*}Cuatro sesiones adicionales para aplicar 2 evaluaciones parciales (1 sesión cada una) y una final (dos sesiones).

1 Sesión

ACTIVIDADES DE APRENDIZAJE

- **i) Frente a docente**: Se cubre un total de 28 sesiones de una hora y media a la semana con la participación activa del estudiante, a través de preguntas, aportación de ejemplos y desarrollos algebraicos en clase.
- **ii) Independientes**: El estudiante realiza tareas diversas fuera del aula, como solución de problemas algebraicos y numéricos en lenguajes de programación de nivel alto, lectura y análisis de artículos de investigación y referencias bibliográficas.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACION Y ACREDITACION

Dos evaluaciones parciales y una final. El promedio de las evaluaciones representan el 60% de la calificación. El 40% restante corresponde a la calificación promedio de las tareas resueltas durante el curso.

BIBLIOGRAFÍA

- 1. J. W. Goodman, Introduction to Fourier Optics (3nd Edition). Mc Graw-Hill.
- 2. R. Bracewell, "Fourier Analysis and Imaging," Sringer 2006