NOMBRE DE LA ASIGNATURA O UNIDAD DE APRENDIZAJE

ÓPTICA FÍSICA

CICLO	CLAVE DE LA ASIGNATURA
Primero	OF

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

El estudiante, al finalizar el curso, comprenderá la naturaleza ondulatoria de la luz y de los fenómenos ópticos modelados bajo este concepto, tales como la interferencia, la difracción, la coherencia y el estado de polarización.

TEMAS Y SUBTEMAS

ILIMAO I GOBTEMAG		SESIÓN
1. Interferencia (11 horas).		Sesión 1
1.1. Condiciones para observar interferencia	T1, C7, pp.286-290	
1.2. Interferencia de dos haces: División de frente de		
onda	T1, C7, pp.290-302	
1.2.1.Experimento de Young 1.2.2.Interferómetro estelar de Michelson	T1, C7, pp.302-308	Sesión 2
1.2.2.Interierometro estelar de Michelson 1.3. Interferencia de dos haces: División de amplitud	T1, C7, pp.313-334	Sesion 2
1.3.1. La placa plano-paralela: Franjas de igual	11, C1, pp.313-334	
inclinación y de igual grosor	T1, C7, pp.334-341	
1.3.2.Interferómetros de pase doble (Michelson y	, о., рр.оо. о	
Twyman-Green)	T1, C7, pp.348-359	
1.3.3.Interferómetros de pase sencillo (Mach-Zehnder)	T4, C4, pp.122-143	Sesión 3
1.3.4.Interferómetros de desplazamiento de frente de		
onda (Lateral)	T5, C9, pp.243-247	Onniém 4
1.3.5.Interferómetros de trayectoria común (Sagnac)1.4. Interferencia de haces múltiples	T1, C7, pp.359-366	Sesión 4
1.4.1.Interferencia múltiple en una placa plano paralela	T1, C7, pp.339-300 T1, C7, pp.377-370	
1.4.2.Interferómetro Fabry-Perot	T1, C7, pp.377-370	Sesión 5
1.4.3.Espectroscopia de alta resolución con el	, с., рр.с. с ссс	000.0
interferómetro de Fabry-Perot	T6, C8, pp.213-216	
1.4.4.Láseres y la cavidad Fabry-Perot	T1, C7, pp.386-390	Sesión 6
1.4.5.Filtros de capas delgadas de interferencia	T6,C22, pp.476-490	
1.4.6.Método matricial para películas delgadas		o :: =
2. Coherencia (4 horas).		Sesión 7
 Concepto heurístico de coherencia temporal y espacial 		
2.2. Funciones de correlación de haces de luz	T1, C10, pp. 562-566	
2.3. Teorema de Wiener-Khintchine	T1, C10, pp. 566-568	Sesión 8
2.4. Teorema de van Cittert-Zernike	T1, C10, pp. 569-577	
2.5. Visibilidad de las franjas de interferencia.		Sesión 9
2.5.1.Efectos de la extensión de la fuente		
2.5.2.Efectos del ancho espectral de la fuente		
3. Difracción (13 horas). Las siguientes secciones se sugiere sean cubiertas por los estudiantes (tareas,		
exposiciones o exámenes).		
3.1. Teoría escalar de Difracción		Sesión 10
3.1.1. Principio de Huygens-Fresnel	T1, C8, pp.413-417	2222
3.1.2. Teorema integral de Helmholtz-Kirchhoff	T1, C8, pp.418-421	
3.1.3.Integrales de difracción de Fresnel-Kirchhoff y	T1, C8, pp. 421-424	Sesión 11

Rayleigh-Sommerfield 3.1.4.Principio de Babinet 3.2. Difracción de Fresnel. 3.2.1.Borde recto 3.2.2.Rendija simple	y 512-516 T1, C8, pp.424-425 T1, C8, pp. 476-484	Sesión 12
3.2.3.Abertura circular	TC 040 040 040	Sesión 13
3.2.4.Placa zonal de Fresnel 3.3. Difracción de Fraunhofer	T6, C13, pp. 316-318	Sesión 14
3.3.1. Rendija simple y abertura rectangular3.3.2.Abertura circular3.3.3.Teorema de arreglo	T1, C8, pp. 436-439 T1, C8, pp. 439-443 T1, C8, pp. 443-446	
3.4. Rejillas de difracción	T1, C8, pp. 446-453	Sesión 15
3.4.1.El principio de la rejilla de difracción3.4.2.Direcciones de máxima irradiancia3.4.3.Distribución angular de la luz		
3.4.4.Poder cromático dispersor		Sesión 16
3.4.5.Poder resolutor3.4.6.Distribución de la energía entre los diferentes órdenes		
3.4.7.Rejillas de fase		Sesión 17
3.4.8.Efecto Talbot (R1, R2, R3) 4. Óptica de Fourier (12 horas).		Sesión 18
4.1 Propagación libre: Espectro angular de ondas	T2, C3, pp.55-62	ocsion to
planas		
4.1.1. Concepto de frecuencia espacial4.1.2.Propagación del espectro angular		
4.2 La transformada de Fourier con una lente	T2, C5, pp.97-108	Sesión 19
4.2.1.Entrada junto a la lente 4.2.2 Entrada por delante de la lente		
4.2.3.Entrada por detrás de la lente		
4.3 Formación de imágenes.		Sesión 20
4.3.1. Luz monocromática	T2, C5, pp.108-115	
4.3.2.Modelo generalizado4.3.3.Sistemas coherentes limitados por difracción	T2, C6, pp.128-135 T2, C6, pp.135-138	Sesión 21
4.3.4. Sistemas incoherentes limitados por difracción	T2, C6, pp.138-145	
4.4 Procesamiento óptico y digital de imágenes.	TO CO 004 045	Sesión 22
4.4.1. Sistema 4-f 4.4.2.Filtros de convolución	T2, C8, pp.234-245	Sesión 23
4.5 Holografía		000.0 =0
4.5.1.Fundamentos de holografía	T2, C9, pp.297-316	
4.5.2.Hologramas generados por4.5.3.Reconstrucción de hologramas digitales	T2, C9, pp.355-366 T7, C3, pp.41-58	Sesión 24
4.5.4.Sistemas de almacenamiento de hologramas	11, 00, pp.+1 00	Sesión 25
(grabación). Sugiero se incluya este tema.		

ACTIVIDADES DE APRENDIZAJE

- i) Frente a docente: Se cubre un total de 28 sesiones de una hora y media a la semana con la participación activa del estudiante. Dependiendo de la dificultad de los temas a tratar los conceptos básicos se pueden reforzar con sesiones demostrativas en el laboratorio.
- i) Independientes: El estudiante realiza tareas diversas fuera del aula, como solución de problemas algebraicos y numéricos, lectura y análisis de artículos de investigación y referencias bibliográficas que significan un promedio de 42 horas en total.
- **ii) Demostraciones:** El estudiante recibirá sesiones demostrativas de los principios que sustentan los siguientes experimentos:

- 1. Luz no polarizada, parcialmente polarizada y totalmente polarizada. Mecanismos naturales (reflexión, scattering, dicroismo, birrefringencia).
- 2. Interferencia entre dos haces de luz. Experimento de young de la doble rendija (naturaleza ondulatoria de la luz, estimación de la longitud de onda).
- 3. Experimento de michelson-morlesy.
- 4. Rejillas de difracciones (rectangulares, circulares, periódicas).
- 5. Generación básica de hologramas.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACION Y ACREDITACION

El curso se evalúa de acuerdo a los siguientes conceptos: tareas, exposiciones, investigación, exámenes y asistencia. El porcentaje para cada uno de estos puntos, será criterio del docente y éste lo dará a conocer a sus estudiantes al inicio del curso.

BIBLIOGRAFÍA

- 1. Principles of Optics; M. Born y E. Wolf; Cambridge (2006).
- 2. Introduction to Fourier Optics; J. W. Goodman; Roberts & Co (2004).
- 3. Ellipsometry and polarized light; R. M. A. Azzam, N. M. Bashara; New Holland
- 4. Optical Shop Testing; Ed. D. Malacara; Wiley (2007).
- 5. Optical Physics; S. G. Lipson, H. Lipson, D. S. Tannhauser; Cambridge (1995).
- 6. Introduction to Optics; F. L. Pedrotti, L. S. Pedrotti, L. M. Pedrotti; Addison-Wesley (2007).
- 7. Digital Holography; U. Schnars, W. Jueptner; Springer (2005).

ARTÍCULOS CIENTÍFICOS

- Shuyun Teng, Tongjun Zhou, Chuanfu Cheng; "Influence of the size of the grating on Talbot effect"; Optik 119 (14), 695–699 (2008).
- Jianming Wen, Yong Zhang, Min Xiao; "The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics"; Advances in Optics and Photonics 5, 83–130 (2013).
- Maripov and Y. Ismanov; "The Talbot effect (a self-imaging phenomenon) in holography"; Journal of Applied Physics 74, 7039 (1993).

BIBLIOGRAFÍA COMPLEMENTARIA

- Principles and applications of Fourier Optics; R. K. Tyson (2014); IOP Publishing.
- Optics; E. Hetch; Addison-Wesley (2001).
- Optics. Principleas and Applications; K. K. Sharma; Academic Press.
- Introduction to Modern Optics; G. R. Fowles; Dover.
- Fundamentals of Optics; F. A. Jenkins, H. E. White; Tata McGraw-Hill Education.
- The Fourier Transform & Its Applications; R. Bracewell; McGraw-Hill Science.
- Mathematical Methods for Optical Physics and Engineering; G. J. Gbur; Cambridge.

ANOTACIÓN:

T#: # del libro en la lista de Bibliografía básica. C#: # del capítulo en el libro correspondiente.

pp.: Páginas en el capítulo correspondiente.

R#: # de artículo en la lista de Artículos científicos.